Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.307
Filtrar
1.
J Nepal Health Res Counc ; 21(3): 479-485, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38615221

RESUMO

BACKGROUND: Larval source management is an effective measure to control mosquito-borne diseases. Bacillus thuringiensis produces specific insecticidal crystal proteins toxic to mosquito larvae. In many parts of the South East Asian region, Bacillus thuringiensis is used for larval source management. In Nepal, larvicidal Bacillus thuringiensis is not available. The study aims to isolate larvicidal Bacillus thuringiensis from soil samples of Nepal to control mosquitoes. METHODS: Native Bacillus thuringiensis was obtained from soil samples by the acetate selection method. It was identified by observing crystal protein with Coomassie Brilliant Blue stain in a light microscope. The mosquito larvae were collected from different breeding habitats. A preliminary bioassay was performed by inoculating three loopful of 48 hours culture of spherical crystal protein producing Bacillus thuringiensis in a plastic cup containing 25 larvae and 100 ml of sterile distilled water. The cup was incubated at room temperature for 24 hours to observe the mortality of larvae. Further selective bioassay was performed with the isolate which showed 100% mortality, as described above in four replicates along with the negative and positive control. RESULTS: Out of 1385 Bacillus thuringiensis obtained from 454 soil samples, 766 (55.30%) were spherical crystal protein producers, among them, a single strain (14P2A) showed 100% mortality against mosquito larvae. The lethal concentration doses required to kill 50% and 90% of the larval population were 32.35 and 46.77 Parts per million respectively. CONCLUSIONS: The native Bacillus thuringiensis produces the crystal protein effective in killing mosquito larvae. The native Bacillus thuringiensis should be included as a tool to control mosquito-borne diseases in Nepal.


Assuntos
Bacillus thuringiensis , Controle de Mosquitos , Mosquitos Vetores , Animais , Mosquitos Vetores/microbiologia , 60509/prevenção & controle , Nepal , Solo
2.
Sci Rep ; 14(1): 8650, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622230

RESUMO

Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas/genética , Gana/epidemiologia , Inseticidas/farmacologia , Controle de Mosquitos
3.
Malar J ; 23(1): 100, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589884

RESUMO

BACKGROUND: Anopheles gambiae, the major malaria mosquito in sub-Saharan Africa, feed largely indoors at night. Raising a house off the ground with no barriers underneath reduces mosquito-house entry. This experiment tested whether walling off the space under an elevated hut affects mosquito-hut entry. METHODS: Four inhabited experimental huts, each of which could be moved up and down, were used in rural Gambia. Nightly collections of mosquitoes were made using light traps and temperature and carbon dioxide levels monitored indoors and outdoors using loggers. Each night, a reference hut was kept at ground level and three huts raised 2 m above the ground; with the space under the hut left open, walled with air-permeable walls or solid walls. Treatments were rotated every four nights using a randomized block design. The experiment was conducted for 32 nights. Primary measurements were mosquito numbers and indoor temperature in each hut. RESULTS: A total of 1,259 female Anopheles gambiae sensu lato were collected in the hut at ground level, 655 in the hut with an open ground floor, 981 in the hut with air-permeable walls underneath and 873 in the hut with solid walls underneath. Multivariate analysis, adjusting for confounders, showed that a raised hut open underneath had 53% fewer mosquitoes (95% CI 47-58%), those with air-permeable walls underneath 24% fewer (95% CI 9-36%) and huts with solid walls underneath 31% fewer (95% CI 24-37%) compared with a hut on the ground. Similar results were found for Mansonia spp. and total number of female mosquitoes, but not for Culex mosquitoes where hut entry was unaffected by height or barriers. Indoor temperature and carbon dioxide levels were similar in all huts. CONCLUSION: Raising a house 2 m from the ground reduces the entry of An. gambiae and Mansonia mosquitoes, but not Culex species. The protective effect of height is reduced if the space underneath the hut is walled off.


Assuntos
Anopheles , Culex , Inseticidas , Animais , Feminino , Gâmbia , Dióxido de Carbono/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores , Inseticidas/farmacologia
4.
Parasit Vectors ; 17(1): 183, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600549

RESUMO

BACKGROUND: Clothianidin-based indoor residual spraying (IRS) formulations have become available for malaria control as either solo formulations of clothianidin or a mixture of clothianidin with the pyrethroid deltamethrin. While both formulations have been successfully used for malaria control, studies investigating the effect of the pyrethroid in IRS mixtures may help improve our understanding for development of future IRS products. It has been speculated that the irritant effect of the pyrethroid in the mixture formulation may result in shorter mosquito contact times with the treated walls potentially leading to a lower impact. METHODS: We compared contact irritancy expressed as the number of mosquito take-offs from cement surfaces treated with an IRS formulation containing clothianidin alone (SumiShield® 50WG) to clothianidin-deltamethrin mixture IRS formulations against pyrethroid-resistant Anopheles gambiae sensu lato under controlled laboratory conditions using a modified version of the World Health Organisation cone bioassay. To control for the pyrethroid, comparison was made with a deltamethrin-only formulation. Both commercial and generic non-commercial mixture formulations of clothianidin and deltamethrin were tested. RESULTS: The clothianidin solo formulation did not show significant contact irritancy relative to the untreated control (3.5 take-offs vs. 3.1 take-offs, p = 0.614) while all deltamethrin-containing IRS induced significant irritant effects. The number of take-offs compared to the clothianidin solo formulation (3.5) was significantly higher with the commercial clothianidin-deltamethrin mixture (6.1, p = 0.001), generic clothianidin-deltamethrin mixture (7.0, p < 0.001), and deltamethrin-only (8.2, p < 0.001) formulations. The commercial clothianidin-deltamethrin mixture induced similar contact irritancy as the generic clothianidin-deltamethrin mixture (6.1 take-offs vs. 7.0 take-offs, p = 0.263) and deltamethrin-only IRS (6.1 take-offs vs. 8.2, p = 0.071), showing that the irritant effect in the mixture was attributable to its deltamethrin component. CONCLUSIONS: This study provides evidence that the enhanced contact irritancy of the pyrethroid in clothianidin-deltamethrin IRS mixtures can shorten mosquito contact times with treated walls compared to the clothianidin solo formulation. Further trials are needed to directly compare the efficacy of these formulation types under field conditions and establish the impact of this enhanced contact irritancy on the performance of IRS mixture formulations containing pyrethroids.


Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Neonicotinoides , Nitrilas , Piretrinas , Tiazóis , Animais , Inseticidas/farmacologia , Irritantes/farmacologia , Controle de Mosquitos , Piretrinas/farmacologia , Malária/prevenção & controle , Resistência a Inseticidas , Mosquitos Vetores
5.
Malar J ; 23(1): 107, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632650

RESUMO

BACKGROUND: Achieving effective control and elimination of malaria in endemic regions necessitates a comprehensive understanding of local mosquito species responsible for malaria transmission and their susceptibility to insecticides. METHODS: The study was conducted in the highly malaria prone Ujina Primary Health Center of Nuh (Mewat) district of Haryana state of India. Monthly entomological surveys were carried out for adult mosquito collections via indoor resting collections, light trap collections, and pyrethrum spray collections. Larvae were also collected from different breeding sites prevalent in the region. Insecticide resistance bioassay, vector incrimination, blood meal analysis was done with the collected vector mosquitoes. RESULTS: A total of 34,974 adult Anopheles mosquitoes were caught during the survey period, out of which Anopheles subpictus was predominant (54.7%). Among vectors, Anopheles stephensi was predominant (15.5%) followed by Anopheles culicifacies (10.1%). The Human Blood Index (HBI) in the case of An. culicifacies and An. stephensi was 6.66 and 9.09, respectively. Vector incrimination results revealed Plasmodium vivax positivity rate of 1.6% for An. culicifacies. Both the vector species were found resistant to DDT, malathion and deltamethrin. CONCLUSION: The emergence of insecticide resistance in both vector species, compromises the effectiveness of commonly used public health insecticides. Consequently, the implementation of robust insecticide resistance management strategies becomes imperative. To effectively tackle the malaria transmission, a significant shift in vector control strategies is warranted, with careful consideration and adaptation to address specific challenges encountered in malaria elimination efforts.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Humanos , Inseticidas/farmacologia , Resistência a Inseticidas , Malária/prevenção & controle , DDT , Controle de Mosquitos/métodos , Mosquitos Vetores , Nitrilas , Índia/epidemiologia
6.
Sci Rep ; 14(1): 9044, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641670

RESUMO

Vector control is one of the principal strategies used for reducing malaria transmission. Long-lasting insecticidal bed nets (LLINs) are a key tool used to protect populations at risk of malaria, since they provide both physical and chemical barriers to prevent human-vector contact. This study aimed to assess the physical durability and insecticidal efficacy of LLINs distributed in Cruzeiro do Sul (CZS), Brazil, after 4 years of use. A total of 3000 LLINs (PermaNet 2.0) were distributed in high malaria risk areas of CZS in 2007. After 4 years of use, 27 'rectangular' LLINs and 28 'conical' LLINs were randomly selected for analysis. The evaluation of physical integrity was based on counting the number of holes and measuring their size and location on the nets. Insecticidal efficacy was evaluated by cone bioassays, and the amount of residual insecticide remaining on the surface of the LLINs was estimated using a colorimetric method. After 4 years of use, physical damage was highly prevalent on the rectangular LLINs, with a total of 473 holes detected across the 27 nets. The upper portion of the side panels sustained the greatest damage in rectangular LLINs. The overall mosquito mortality by cone bioassay was < 80% in 25/27 rectangular LLINs, with panel A (at the end of the rectangular bednet) presenting the highest mortality (54%). The overall mean insecticide concentration was 0.5 µg/sample, with the bednet roof containing the highest average concentration (0.61 µg/sample). On the conical LLINs, 547 holes were detected, with the bottom areas sustaining the greatest damage. The cone bioassay mortality was < 80% in 26/28 of the conical LLINs. The mean insecticide concentration was 0.3 µg/sample. After 4 years of use, the insecticidal efficacy of the LLINs was diminished to below acceptable thresholds.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Animais , Humanos , Inseticidas/farmacologia , Brasil , Controle de Mosquitos/métodos , Mosquitos Vetores , Malária/prevenção & controle
7.
PLoS Negl Trop Dis ; 18(4): e0012081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630673

RESUMO

BACKGROUND: Dengue virus (DENV) is endemic to many parts of the world and has serious health and socioeconomic effects even in high-income countries, especially with rapid changes in the climate globally. We explored the literature on dengue vector control methods used in high-income, city settings and associations with dengue incidence, dengue prevalence, or mosquito vector densities. METHODS: Studies of any design or year were included if they reported effects on human DENV infection or Aedes vector indices of dengue-specific vector control interventions in high-income, city settings. RESULTS: Of 24 eligible sources, most reported research in the United States (n = 8) or Australia (n = 5). Biocontrol (n = 12) and chemical control (n = 13) were the most frequently discussed vector control methods. Only 6 sources reported data on the effectiveness of a given method in reducing human DENV incidence or prevalence, 2 described effects of larval and adult control on Aedes DENV positivity, 20 reported effectiveness in reducing vector density, using insecticide, larvicide, source reduction, auto-dissemination of pyriproxyfen and Wolbachia, and only 1 described effects on human-vector contact. CONCLUSIONS: As most studies reported reductions in vector densities, rather than any effects on human DENV incidence or prevalence, we can draw no clear conclusions on which interventions might be most effective in reducing dengue in high-income, city areas. More research is needed linking evidence on the effects of different DENV vector control methods with dengue incidence/prevalence or mosquito vector densities in high-income, city settings as this is likely to differ from low-income settings. This is a significant evidence gap as climate changes increase the global reach of DENV. The importance of community involvement was clear in several studies, although it is impossible to tease out the relative contributions of this from other control methods used.


Assuntos
Aedes , Vírus da Dengue , Dengue , Adulto , Animais , Humanos , Dengue/epidemiologia , Mosquitos Vetores , Controle de Mosquitos/métodos , Cidades
8.
Malar J ; 23(1): 113, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643165

RESUMO

BACKGROUND: Microsporidia MB, an endosymbiont naturally found in Anopheles mosquitoes inhibits transmission of Plasmodium and is a promising candidate for a transmission-blocking strategy that may involve mosquito release. A rapid assessment was carried out to develop insight into sociodemographic factors, public health concerns, and malaria awareness, management, and prevention practices with the willingness to accept and participate in Microsporidia MB-based transmission-blocking strategy to develop an informed stakeholder engagement process. METHODS: The assessment consisted of a survey conducted in two communities in western Kenya that involved administering a questionnaire consisting of structured, semi-structured, and open questions to 8108 household heads. RESULTS: There was an overall high level of willingness to accept (81%) and participate in the implementation of the strategy (96%). Although the willingness to accept was similar in both communities, Ombeyi community was more willing to participate (OR 22, 95% CI 13-36). Women were less willing to accept (OR 0.8, 95% CI 0.7-0.9) compared to men due to fear of increased mosquito bites near homes. Household heads with incomplete primary education were more willing to accept (OR 1.6, 95% CI 01.2-2.2) compared to those educated to primary level or higher. Perceiving malaria as a moderate or low public health issue was also associated with a lower willingness to accept and participate. Experience of > 3 malaria cases in the family over the last six months and knowledge that malaria is transmitted by only mosquito bites, increased the willingness to accept but reduced the willingness to participate. Awareness of malaria control methods based on mosquitoes that cannot transmit malaria increases the willingness to participate. CONCLUSION: The study showed a high level of willingness to accept and participate in a Microsporidia MB-based strategy in the community, which is influenced by several factors such as community, disease risk perception, gender, education level, knowledge, and experience of malaria. Further research will need to focus on understanding the concerns of women, educated, and employed community members, and factors that contribute to the lower disease risk perception. This improved understanding will lead to the development of an effective communication strategy.


Assuntos
Mordeduras e Picadas de Insetos , Malária , Microsporídios , Masculino , Animais , Humanos , Feminino , Quênia , Malária/prevenção & controle , Saúde Pública , Controle de Mosquitos/métodos , Mosquitos Vetores
9.
Malar J ; 23(1): 94, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575937

RESUMO

BACKGROUND: Despite remarkable progress in malaria burden reduction, malaria continues to be a major public health problem globally. Ethiopia has been distributing long-lasting insecticidal nets (LLINs) for free and nationwide distribution was completed in 2016. However, evidence suggests that the utilization of LLINs varies from setting to setting and from time to time due to different factors, and up-to-date evidence is required for LLIN related decision-making. Hence, this study was designed to assess LLIN utilization and its determinants in the Southern Nations, Nationalities, and People's Region (SNNPR) of Ethiopia. METHODS: A community-based cross-sectional study was conducted in Southern Ethiopia in 2019. Using multi-stage sampling, a total of 2466 households were included. The region was stratified based on the annual malaria index as high, moderate, low, and free strata. Cluster sampling was then applied to select households from high, moderate, and low strata. Data on LLIN ownership, utilization and different determinant factors were collected using household questionnaire. SurveyCTO was used to collect data and data was managed using Stata 15. Descriptive statistics and multilevel mixed-effects logistic regression were performed to identify the determinants of utilization of LLINs. Effect measures were reported using adjusted odds ratio (AOR) with 95% CI. RESULTS: From a total of 2466 households, 48.7% of households had at least one LLIN. LLIN adequacy based on family size was 23% while it was15.7% based on universal access and 29.2% based on sleeping space. From 1202 households that possessed LLIN(s), 66.0% of households reported that they slept under LLIN the night preceding the survey. However, when the total population in all surveyed households were considered, only 22.9% of household members slept under LLIN the night preceding the survey. Malaria endemicity, educational status, wealth status, and knowledge about malaria were associated with LLINs utilization. In addition, reasons for non-use included perceived absence of malaria, side effects of LLIN, conditions of LLINs, inconvenient space and low awareness. CONCLUSION: Low LLIN coverage and low utilization were noted. A low level of utilization was associated with malaria endemicity, wealth status and level of awareness. Distribution of LLIN and continuous follow-up with community awareness creation activities are vital to improve coverage and utilization of LLINs, and to ensure the country's malaria elimination goal.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Humanos , Estudos Transversais , Etiópia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Saúde Pública , Controle de Mosquitos/métodos
10.
Proc Natl Acad Sci U S A ; 121(15): e2310859121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527214

RESUMO

Malaria is a disease of global significance. Ongoing changes to the earth's climate, antimalarial resistance, insecticide resistance, and socioeconomic decline test the resilience of malaria prevention programs. Museum insect specimens present an untapped resource for studying vector-borne pathogens, spurring the question: Do historical mosquito collections contain Plasmodium DNA, and, if so, can museum specimens be used to reconstruct the historical epidemiology of malaria? In this Perspective, we explore molecular techniques practical to pathogen prospecting, which, more broadly, we define as the science of screening entomological museum specimens for human, animal, or plant pathogens. Historical DNA and pathogen prospecting provide a means of describing the coevolution of human, vector, and parasite, informing the development of insecticides, diagnostics, therapeutics, and vaccines.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Museus , Anopheles/genética , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Resistência a Inseticidas , Inseticidas/farmacologia , DNA , Controle de Mosquitos
11.
Parasit Vectors ; 17(1): 159, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549097

RESUMO

BACKGROUND: The WHO cone bioassay is routinely used to evaluate the bioefficacy of insecticide-treated nets (ITNs) for product pre-qualification and confirmation of continued ITN performance during operational monitoring. Despite its standardized nature, variability is often observed between tests. We investigated the influence of temperature in the testing environment, mosquito feeding status and mosquito density on cone bioassay results. METHODS: Cone bioassays were conducted on MAGNet (alphacypermethrin) and Veeralin (alphacypermethrin and piperonyl butoxide (PBO)) ITNs, using laboratory-reared pyrethroid-resistant Anopheles funestus sensu stricto (FUMOZ strain) mosquitoes. Three experiments were conducted using standard cone bioassays following WHO-recommended test parameters, with one variable changed in each bioassay: (i) environmental temperature during exposure: 22-23 °C, 26-27 °C, 29-30 °C and 32-33 °C; (ii) feeding regimen before exposure: sugar starved for 6 h, blood-fed or sugar-fed; and (iii) mosquito density per cone: 5, 10, 15 and 20 mosquitoes. For each test, 15 net samples per treatment arm were tested with four cones per sample (N = 60). Mortality after 24, 48 and 72 h post-exposure to ITNs was recorded. RESULTS: There was a notable influence of temperature, feeding status and mosquito density on An. funestus mortality for both types of ITNs. Mortality at 24 h post-exposure was significantly higher at 32-33 °C than at 26-27 °C for both the MAGNet [19.33% vs 7%; odds ratio (OR): 3.96, 95% confidence interval (CI): 1.99-7.87, P < 0.001] and Veeralin (91% vs 47.33%; OR: 22.20, 95% CI: 11.45-43.05, P < 0.001) ITNs. Mosquito feeding status influenced the observed mortality. Relative to sugar-fed mosquitoes, The MAGNet ITNs induced higher mortality among blood-fed mosquitoes (7% vs 3%; OR: 2.23, 95% CI: 0.94-5.27, P = 0.068) and significantly higher mortality among starved mosquitoes (8% vs 3%, OR: 2.88, 95% CI: 1.25-6.63, P = 0.013); in comparison, the Veeralin ITNs showed significantly lower mortality among blood-fed mosquitoes (43% vs 57%; OR: 0.56, 95% CI: 0.38-0.81, P = 0.002) and no difference for starved mosquitoes (58% vs 57%; OR: 1.05, 95% CI: 0.72-1.51, P = 0.816). Mortality significantly increased with increasing mosquito density for both the MAGNet (e.g. 5 vs 10 mosquitoes: 7% vs 12%; OR: 1.81, 95% CI: 1.03-3.20, P = 0.040) and Veeralin (e.g. 5 vs 10 mosquitoes: 58% vs 71%; OR 2.06, 95% CI: 1.24-3.42, P = 0.005) ITNs. CONCLUSIONS: The results of this study highlight that the testing parameters temperature, feeding status and mosquito density significantly influence the mortality measured in cone bioassays. Careful adherence to testing parameters outlined in WHO ITN testing guidelines will likely improve the repeatability of studies within and between product testing facilities.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Temperatura , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Bioensaio/métodos , Açúcares , Resistência a Inseticidas
12.
PLoS Negl Trop Dis ; 18(3): e0012021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38551982

RESUMO

BACKGROUND: Entomological surveillance of lymphatic filariasis and malaria infections play an important role in the decision-making of national programs to control, or eliminate these both diseases. In areas where both diseases prevalence is low, a large number of mosquitoes need to be sampled to determine vectors infection rate. To do this, efficient mosquito collection methods must be used. This study is part in this framework, to assess appropriate mosquito collection methods for lymphatic filariasis xenomonitoring in a coexistence context with malaria in Burkina Faso. METHODOLOGY/PRINCIPAL FINDINGS: Mosquito collections were performed between August and September 2018 in four villages (Koulpissi, Seiga, and Péribgan, Saptan), distributed in East and South-West health regions of Burkina Faso. Different collection methods were used: Human Landing Catches (HLC) executed indoor and outdoor, Window Exit-Trap, Double Net Trap (DNT) and Pyrethrum Spray Catches (PSC). Molecular analyses were performed to identify Anopheles gambiae s.l. sibling species and to detect Wuchereria bancrofti and Plasmodium falciparum infection in Anopheles mosquitoes. A total of 3 322 mosquitoes were collected among this, Anopheles gambiae s.l. was the vector caught in largest proportion (63.82%). An. gambiae s.l. sibling species molecular characterization showed that An. gambiae was the dominant specie in all villages. The Human Landing Catches (indoor and outdoor) collected the highest proportion of mosquitoes (between 61.5% and 82.79%). For the sampling vectors infected to W. bancrofti or P. falciparum, PSC, HLC and Window Exit-Trap were found the most effective collection methods. CONCLUSIONS/SIGNIFICANCE: This study revealed that HLC indoor and outdoor remained the most effective collection method. Likewise, the results showed the probability to use Window Exit-Trap and PSC collection methods to sample Anopheles infected.


Assuntos
Anopheles , Coinfecção , Filariose Linfática , Malária Falciparum , Malária , Animais , Humanos , Filariose Linfática/epidemiologia , Burkina Faso/epidemiologia , Mosquitos Vetores , Malária/complicações , Malária/epidemiologia , Malária Falciparum/epidemiologia , Controle de Mosquitos/métodos
13.
BMC Public Health ; 24(1): 815, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491483

RESUMO

BACKGROUND: Malaria is one of the most common causes of morbidity and mortality in developing countries including Ethiopia. Mass distribution of insecticide-treated nets and indoor residual spray for high malaria risk groups are the major prevention measures in different countries. Achievement of the malaria elimination plan is highly determined by the level of effective utilization of intervention measures. However, there is scarce information showing the national level of insecticide-treated nets utilization. OBJECTIVE: To estimate the pooled prevalence of insecticide-treated nets utilization in Ethiopia, 2023. METHOD: A Systematic Review and Meta-analysis employed to assess the utilization of long-lasting insecticidal nets in Ethiopia. Published articles were searched from Google Scholar, PubMed, Web Sciences, CINAHIL, EMBASE, and Scopus. The collected articles were screened for data extraction and further analysis using preferred reporting items for systematic review and meta-analysis (PRISMA) flow chart. The quality of each study was assessed using the Jonna Briggs Institute (JBI) checklist. The data were extracted using Microsoft Excel and exported to STATA version 17.0 for analysis. The overall pooled prevalence of long-lasting insecticidal nets utilization was determined using a random effects model. RESULT: Out of 1657 articles reviewed, only 21 of them were eligible for final analysis. All of the included studies were used to estimate the pooled prevalence of long-lasting insecticidal net utilization. The point prevalence of LLIN utilization ranged from 14.23 to 91.9%. The Meta-analysis estimated that the overall pooled prevalence of insecticidal nets utilization among all study participants in Ethiopia was 56.26% (95%CI: 44.04-68.48%). Subgroup analysis revealed that insecticidal nets utilization was relatively highest in the Amhara region [63.0, 95%CI (37.0-89.0%)] and during 2020-2023 [61, 95% CI (53.0-69.0%)]. CONCLUSION: Long-lasting insecticidal nets utilization in Ethiopia is lower than the national target plan. Hence, it needs extra follow-up and intervention to enhance its utilization.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Humanos , Etiópia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Academias e Institutos , Controle de Mosquitos
14.
Malar J ; 23(1): 80, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491492

RESUMO

BACKGROUND: Malaria vector control activities in Sudan rely largely on Long-Lasting Insecticidal Nets (LLINs), Indoor Residual Spray (IRS) and Larval Source Management (LSM). The present study attempted to determine cost effectiveness of inputs and operations of vector control interventions applied in different environmental settings in central and eastern Sudan, as well as their impact. METHODS: The inputs utilized and cost of each vector control activity, operational achievements and impact of the applied malaria vector control activities; IRS, LLINs and LSM were determined for eight sites in Al Gazira state (central Sudan) and Al Gadarif state (eastern Sudan). Operational costs were obtained from data of the National Malaria Control Program in 2017. Impact was measured using entomological indicators for Anopheles mosquitoes. RESULTS: The total cost per person per year was $1.6, $0.85, and $0.32 for IRS, LLINs and LSM, respectively. Coverage of vector control operations was 97%, 95.2% and 25-50% in IRS, LLINs and LSM, respectively. Vectorial capacity of malaria vectors showed statistically significant variations (P < 0.034) and ranged 0.294-0.65 in areas implemented LSM in comparison to 0.097-0.248 in areas applied IRS and LLINs, respectively. Both indoor and outdoor biting Anopheles mosquitoes showed noticeable increase that reached 3-12 folds in areas implemented LSM in comparison to areas implemented IRS and LLINs. Annual malaria prevalence was 13.1-21.1% in areas implemented LSM in comparison to 3.20%, 4.77% in areas implemented IRS and LLINs, respectively. CONCLUSION: IRS and LLINs are cost effective control measures due to adequate inputs and organized process. However, the unit cost of LSM intervention per outcome and subsequently the impact is hugely affected by the low coverage. The very weak support for implementation of LSM which includes inputs resulted in weakness of its process and consequently its impact. Implementation of LSM by local government in urban settings is challenged by many factors the most important are maintenance of adequate stable level of funding, un-adequate number of well trained health workers, unstable political and administrative conditions and weak infrastructure. These challenges are critical for proper implementation of LSM and control of malaria in urban settings in Sudan.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Animais , Humanos , Controle de Mosquitos/métodos , Análise de Custo-Efetividade , Sudão/epidemiologia , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Inseticidas/farmacologia , Larva
15.
Malar J ; 23(1): 81, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493098

RESUMO

BACKGROUND: Vector surveillance is among the World Health Organization global vector control response (2017-2030) pillars. Human landing catches are a gold standard but difficult to implement and potentially expose collectors to malaria infection. Other methods like light traps, pyrethrum spray catches and aspiration are less expensive and less risky to collectors. METHODS: Three mosquito sampling methods (UV light traps, CDC light traps and Prokopack aspiration) were evaluated against human landing catches (HLC) in two villages of Rarieda sub-county, Siaya County, Kenya. UV-LTs, CDC-LTs and HLCs were conducted hourly between 17:00 and 07:00. Aspiration was done indoors and outdoors between 07:00 and 11:00 a.m. Analyses of mosquito densities, species abundance and sporozoite infectivity were performed across all sampling methods. Species identification PCR and ELISAs were done for Anopheles gambiae and Anopheles funestus complexes and data analysis was done in R. RESULTS: Anopheles mosquitoes sampled from 608 trapping efforts were 5,370 constituting 70.3% Anopheles funestus sensu lato (s.l.), 19.7% Anopheles coustani and 7.2% An. gambiae s.l. 93.8% of An. funestus s.l. were An. funestus sensu stricto (s.s.) and 97.8% of An. gambiae s.l. were Anopheles arabiensis. Only An. funestus were sporozoite positive with 3.1% infection prevalence. Indoors, aspiration captured higher An. funestus (mean = 6.74; RR = 8.83, P < 0.001) then UV-LT (mean = 3.70; RR = 3.97, P < 0.001) and CDC-LT (mean = 1.74; RR = 1.89, P = 0.03) compared to HLC. UV-LT and CDC-LT indoors captured averagely 0.18 An. arabiensis RR = 5.75, P = 0.028 and RR = 5.87, P = 0.028 respectively. Outdoors, UV-LT collected significantly higher Anopheles mosquitoes compared to HLC (An. funestus: RR = 5.18, P < 0.001; An. arabiensis: RR = 15.64, P = 0.009; An. coustani: RR = 11.65, P < 0.001). Anopheles funestus hourly biting indoors in UV-LT and CDC-LT indicated different peaks compared to HLC. CONCLUSIONS: Anopheles funestus remains the predominant mosquito species. More mosquitoes were collected using aspiration, CDC-LTs and UV-LTs indoors and UV-LTs and CD-LTs outdoors compared to HLCs. UV-LTs collected more mosquitoes than CDC-LTs. The varied trends observed at different times of the night suggest that these methods collect mosquitoes with diverse activities and care must be taken when interpreting the results.


Assuntos
Anopheles , Malária , Animais , Humanos , Anopheles/fisiologia , Quênia/epidemiologia , Mosquitos Vetores/fisiologia , Comportamento Alimentar , Esporozoítos , Controle de Mosquitos/métodos
16.
BMC Public Health ; 24(1): 755, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468243

RESUMO

Malaria is a widespread and prevalent disease that affects human population globally, particularly in tropical countries. Malaria is a major health issue in sub-Saharan Africa and it contributes to morbidity and mortality among individuals in Africa. Pregnant women have been also reported as high risk of people been infected with malaria. This review attempted to evaluate the various methods used for health education programs and the effectiveness of the programs in improving ITNs among pregnant women.Methods The search involved various databases; EBCOHOST, MEDLINE, CINAHL, Cochrane library, ScienceDirect, PubMed, SAGE, Sringer link, Web of Science and Wiley Online Library. It was limited to full text research articles that report intervention studies, written in English Language, published between 2003 to 2022. The key words were "malaria", "malaria prevention", "health education", "insecticide-treated nets", "utilization", "pregnant women".Results A total of eleven articles met the inclusion criteria and included in the review. Six studies reported randomized controlled trials (RCTs) while five reported non-randomized controlled trials (NRCT).Conclusions There are evidences from the results which showed that health education programs were improved among pregnant women due to the use of ITNs and LLINS utilization. Furthermore, additional interventions directed at significant others need to be implemented, considering their important role in determining pregnant women's use of ITNs.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Gravidez , Feminino , Humanos , Malária/prevenção & controle , Educação em Saúde , África Subsaariana , Controle de Mosquitos/métodos
17.
Parasit Vectors ; 17(1): 140, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500161

RESUMO

BACKGROUND: Different mosquito control strategies have been implemented to mitigate or prevent mosquito-related public health situations. Modern mosquito control largely relies on multiple approaches, including targeted, specific treatments. Given this, it is becoming increasingly important to supplement these activities with rapid and mobile diagnostic capacities for mosquito-borne diseases. We aimed to create and test the applicability of a rapid diagnostic system for West Nile virus that can be used under field conditions. METHODS: In this pilot study, various types of adult mosquito traps were applied within the regular mosquito monitoring activity framework for mosquito control. Then, the captured specimens were used for the detection of West Nile virus RNA under field conditions with a portable qRT-PCR approach within 3-4 h. Then, positive samples were subjected to confirmatory RT-PCR or NGS sequencing in the laboratory to obtain genome information of the virus. We implemented phylogenetic analysis to characterize circulating strains. RESULTS: A total of 356 mosquito individuals representing 7 species were processed in 54 pools, each containing up to 20 individuals. These pools were tested for the presence of West Nile virus, and two pools tested positive, containing specimens from the Culex pipiens and Anopheles atroparvus mosquito species. As a result of subsequent sequencing, we present the complete genome of West Nile virus and Bagaza virus. CONCLUSIONS: The rapid identification of infected mosquitoes is the most important component of quick response adulticide or larvicide treatments to prevent human cases. The conceptual framework of real-time surveillance can be optimized for other pathogens and situations not only in relation to West Nile virus. We present an early warning system for mosquito-borne diseases and demonstrate its application to aid rapid-response mosquito control actions.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/epidemiologia , Filogenia , Projetos Piloto , Controle de Mosquitos , Mosquitos Vetores
18.
Malar J ; 23(1): 77, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486288

RESUMO

BACKGROUND: Pyrethroid-based indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) have been employed as key vector control measures against malaria in Namibia. However, pyrethroid resistance in Anopheles mosquitoes may compromise the efficacy of these interventions. To address this challenge, the World Health Organization (WHO) recommends the use of piperonyl butoxide (PBO) LLINs in areas where pyrethroid resistance is confirmed to be mediated by mixed function oxidase (MFO). METHODS: This study assessed the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to WHO tube bioassays with 4% DDT and 0.05% deltamethrin insecticides. Additionally, the study explored the effect of piperonyl butoxide (PBO) synergist by sequentially exposing mosquitoes to deltamethrin (0.05%) alone, PBO (4%) + deltamethrin (0.05%), and PBO alone. The Anopheles mosquitoes were further identified morphologically and molecularly. RESULTS: The findings revealed that An. gambiae sensu stricto (s.s.) (62%) was more prevalent than Anopheles arabiensis (38%). The WHO tube bioassays confirmed resistance to deltamethrin 0.05% in the Oshikoto, Kunene, and Kavango West regions, with mortality rates of 79, 86, and 67%, respectively. In contrast, An. arabiensis displayed resistance to deltamethrin 0.05% in Oshikoto (82% mortality) and reduced susceptibility in Kavango West (96% mortality). Notably, there was reduced susceptibility to DDT 4% in both An. gambiae s.s. and An. arabiensis from the Kavango West region. Subsequently, a subsample from PBO synergist assays in 2020 demonstrated a high proportion of An. arabiensis in Oshana (84.4%) and Oshikoto (73.6%), and 0.42% of Anopheles quadriannulatus in Oshana. Non-amplifiers were also present (15.2% in Oshana; 26.4% in Oshikoto). Deltamethrin resistance with less than 95% mortality, was consistently observed in An. gambiae s.l. populations across all sites in both 2020 and 2021. Following pre-exposure to the PBO synergist, susceptibility to deltamethrin was fully restored with 100.0% mortality at all sites in 2020 and 2021. CONCLUSIONS: Pyrethroid resistance has been identified in An. gambiae s.s. and An. arabiensis in the Kavango West, Kunene, and Oshikoto regions, indicating potential challenges for pyrethroid-based IRS and LLINs. Consequently, the data highlights the promise of pyrethroid-PBO LLINs in addressing resistance issues in the region.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , DDT , Namíbia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos
19.
PLoS Comput Biol ; 20(3): e1011440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484022

RESUMO

Vector control is a vital tool utilised by malaria control and elimination programmes worldwide, and as such it is important that we can accurately quantify the expected public health impact of these methods. There are very few previous models that consider vector-control-induced changes in the age-structure of the vector population and the resulting impact on transmission. We analytically derive the steady-state solution of a novel age-structured deterministic compartmental model describing the mosquito feeding cycle, with mosquito age represented discretely by parity-the number of cycles (or successful bloodmeals) completed. Our key model output comprises an explicit, analytically tractable solution that can be used to directly quantify key transmission statistics, such as the effective reproductive ratio under control, Rc, and investigate the age-structured impact of vector control. Application of this model reinforces current knowledge that adult-acting interventions, such as indoor residual spraying of insecticides (IRS) or long-lasting insecticidal nets (LLINs), can be highly effective at reducing transmission, due to the dual effects of repelling and killing mosquitoes. We also demonstrate how larval measures can be implemented in addition to adult-acting measures to reduce Rc and mitigate the impact of waning insecticidal efficacy, as well as how mid-ranges of LLIN coverage are likely to experience the largest effect of reduced net integrity on transmission. We conclude that whilst well-maintained adult-acting vector control measures are substantially more effective than larval-based interventions, incorporating larval control in existing LLIN or IRS programmes could substantially reduce transmission and help mitigate any waning effects of adult-acting measures.


Assuntos
Anopheles , Inseticidas , Malária , Adulto , Animais , Humanos , Controle de Mosquitos/métodos , Mosquitos Vetores , Inseticidas/farmacologia , Malária/epidemiologia
20.
J Am Chem Soc ; 146(12): 8480-8485, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484471

RESUMO

Mosquito control methods are vital to curtail the spread of life-threatening illnesses, such as dengue fever, malaria, and yellow fever. Vector control technologies must be selective to minimize deleterious effects on our ecosystem. Successful methods that control mosquito larva populations utilize the uniquely high alkaline nature of the midgut. Here, we present novel protected triazabutadienes (pTBD) that are deprotected under basic conditions of the larval midgut, releasing an aryl diazonium ion (ADI) that results in protein modification. The probes contain a bioorthogonal terminal alkyne handle, enabling a selective Cu-click reaction with an azidofluorophore for quantification by SDS PAGE and visualization using fluorescence microscopy. A control TBD, unable to release an ADI, did not label the midgut. We envision our chemical probes will aid in the development of new selective mosquito control methods, thus preventing the spread of mosquito-borne illnesses with minimal impact on other organisms in the ecosystem.


Assuntos
Ecossistema , Malária , Animais , Larva , Ambientes Extremos , Controle de Mosquitos/métodos , Malária/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...